Oxford Uni reveals potential strategies for ending lockdown, to limit risk of second peak

It says governments must decide how to end quarantine, without overwhelming health services.

Experts at Oxford University say the optimal strategy would be to release as many as half the population, two-to-four weeks from the end of an initial infection peak.

Then, they say we should wait another three-to-four months to allow for a second peak before releasing everyone else.

The team from Oxford's Department of Zoology have said we also need to increase testing capacity once the measures are lifted.

Professor Mike Bonsall led the research, and said: ‘What we found was that to limit recurrent spread, ending quarantine for the entire population simultaneously is a high-risk strategy, and that a gradual re-integration approach would be more reliable.

‘Furthermore, to increase the number of people that can be first released, lockdown should not be ended until the number of new daily confirmed cases reaches a sufficiently low threshold.’

Countries around the world are in a state of lockdown to help limit the spread of SARS-CoV-2.

As the number of new daily confirmed cases begins to decrease, governments must decide how to release their populations from quarantine as efficiently as possible.

The new Oxford research applied an optimal control framework to an adapted Susceptible-Exposure-Infection-Recovery (SEIR) model framework to investigate the efficacy of two potential lockdown release strategies. It also used the UK population as a test case.

The team modelled a gradual release strategy by allowing different fractions of those in lockdown to re-enter the working non-quarantined population.

Mathematical optimisation methods, combined with an adapted SEIR model, determined how to maximise those working while preventing the health service from being overwhelmed.

Co-author Thom Rawson, also from the Department of Zoology at Oxford, said: ‘We also modelled an ''on-off'' strategy, of releasing everyone, but re-establishing lockdown if infections become too high.

"We found that the worst-case scenario of a gradual release is more manageable than the worst-case scenario of an on-off strategy, and caution against lockdown-release strategies based on a threshold-dependent on-off mechanism.

"The potential for a large increase in infection numbers adds further evidence to the need for increased testing capacity in the wake of ending lockdown.’

The two quantities most critical in determining the optimal solution are transmission rate and the recovery rate, where the latter is defined as the fraction of infected people in any given day that then become classed as recovered.

The team suggest that the accurate identification of these values is of particular importance to the ongoing monitoring of the pandemic.

More from Oxfordshire News

JACK fm

The Heat Is On by Glenn Frey

JACK 2 Hits

Circles by Post Malone

JACK 3 & Chill

Rich Girl by Hall And Oates